If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+170x+86=0
a = 2; b = 170; c = +86;
Δ = b2-4ac
Δ = 1702-4·2·86
Δ = 28212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28212}=\sqrt{4*7053}=\sqrt{4}*\sqrt{7053}=2\sqrt{7053}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(170)-2\sqrt{7053}}{2*2}=\frac{-170-2\sqrt{7053}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(170)+2\sqrt{7053}}{2*2}=\frac{-170+2\sqrt{7053}}{4} $
| $$3x=−4x−35 | | 2(y+2)-3(y-3)=y+7 | | -2x^2-170x-86=0 | | -x+25=-50 | | 21x+7=9x–17 | | 6y+12=54 | | 9x²=324 | | (x+1)^2-4x^2=0 | | 14x-4x=10x | | 5x-17=x-3 | | 8x+27=4x | | 6(3x-7)=6(x-1) | | 3x+4=287 | | 5*5+9*9=c*c | | 7/2=c/8 | | 5a–7=-3(1-2a) | | 15(4x-1)=275 | | 10w=3=45 | | 9x+33-(45-15x=15-3x | | 6x-(4x+2)=(x-1)+4 | | 14+9k=6k+2 | | 3. 14+9k=6k+2 | | X2+3x-117=0 | | Y=1.25x-8.75 | | 4-(3-x)=3 | | 4y-8=9y+7 | | 5w-23=3(w-3) | | 2x+12-x=12x-18+4x | | 13y–17=7y-5 | | x^2-4^x+3=0 | | x*2x+3=560 | | 22=0.5x+5 |